无标题文档
图书馆 | 所内网 | 所长信箱 | English | 中国科学院
站内搜索  
 
 
新闻
综合新闻
通知公告
图片新闻
学术活动
科研动态
媒体焦点
视频新闻
专题
所区风貌
园区一角南区办公楼自动化所正门自动化所鸟瞰科研楼(A楼)园区一角实验楼(R楼)
特别栏目
ARP Email 所报
 您现在的位置:首页>新闻>科研动态
沈阳自动化所在智能电网大数据方面取得新进展
2017-11-27     | 【】【打印】【关闭

  

  16个用户属性关系图。正值和负值分别表示正相关和负相关。  

  基于智能电网大数据的用户属性预测,对构建智能电网分析系统和智能楼宇建设具有重要意义。传统针对单一用户属性分析的机器学习方法,不仅不能利用各个属性间的关系提高准确率,还不能很好挖掘缺失数据的信息。这两个问题制约了智能电网系统的设计和智能楼宇系统的完善。  

  中国科学院沈阳自动化研究所丛杨研究员及博士生孙干在多年机器学习算法研究基础上,通过将每个属性预测问题作为单个任务,提出了基于多任务学习的用户属性预测模型,实现在少量可用用户数据下的多个任务同时学习和决策。同时,挖掘出了多个用户属性间的关系,提高了多个属性预测的准确率;充分利用缺失数据样本信息,进一步提高了模型泛化能力。

  相关研究成果分别以Joint Household Characteristic Prediction via Smart Meter Data User attribute discovery with missing labels为题,近期在国际知名期刊IEEE Transactions on Smart Grid影响因子:6.645Elsevier知名期刊Pattern Recogniton (影响因子:4.582)发表。其中IEEE Transactions on Smart Grid 是电力系统领域最知名的国际期刊之一Pattern Recognition 是模式识别领域最知名的2个国际期刊之一。该项研究得到了机器人学国家重点实验室、国家自然科学基金的支持。(机器人学研究室) 

  

   

无标题文档-SH!
中国科学院沈阳自动化研究所 版权所有 1996-2013 辽ICP备05000867 联系我们
地址:中国辽宁省沈阳市沈河区南塔街114号 邮编:110016 留言反馈 网站地图